New Insights into the Genetic Regulation of Homologue Disjunction in Mammalian Oocytes
نویسنده
چکیده
Mammalian oocytes execute a unique meiotic programme involving 2 arrest stages and an unusually protracted preamble to chromosome segregation during the first meiotic division (meiosis I). How mammalian oocytes successfully navigate their exceptional meiotic journey has long been a question of immense interest. Understanding the minutiae of female mammalian meiosis I is not merely of academic interest as 80-90% of human aneuploidy is the consequence of errors arising at this particular stage of oocyte maturation, a stage with a peculiar vulnerability to aging. Recent evidence indicates that oocytes employ many of the same cast of proteins during meiosis I as somatic cells do during mitosis, often to execute similar tasks, but intriguingly, occasionally delegate them to unexpected and unprecedented roles. This is epitomised by the master cell-cycle regulon, the anaphase-promoting complex or cyclosome (APC/C), acting in concert with a critical APC/C-targeted surveillance mechanism, the spindle assembly checkpoint (SAC). Together, the APC/C and the SAC are among the most influential entities overseeing the fidelity of cell-cycle progression and the precision of chromosome segregation. Here I review the current status of pivotal elements underpinning homologue disjunction in mammalian oocytes including spindle assembly, critical biochemical anaphase-initiating events, APC/C activity and SAC signalling along with contemporary findings relevant to progressive oocyte SAC dysfunction as a model for age-related human aneuploidy.
منابع مشابه
I-35: Polar Body Analysis by Array CGH Identifies Women with Varying Susceptibility to Aneuploidy and Suggests that Non-disjunction Is Not The Predominant Mechanism Leading to Aneuploidy in Humans
Background: The maternal age effect for trisomy is well known. However what is less established is whether certain women are more (or less) prone to segregation errors, independent of age. Trisomy arises primarily through maternal meiosis I chromosome segregation errors however the precise mechanism by which these errors occur is unclear. Current dogma attributes the origin of trisomy to malseg...
متن کاملA new insight into viral proteins as Immunomodulatory therapeutic agents. KSHV vOX2 a homolog of human CD200 as a potent anti-inflammatory protein
The physiologic function of the immune system is defense against infectious microbes and internal tumour cells, Therefore, need to have precise modulatory mechanisms to maintain the body homeostasis. The mammalian cellular CD200 (OX2)/CD200R interaction is one of such modulatory mechanisms in which myeloid and lymphoid cells are regulated. CD200 and CD200R molecules are membrane proteins that t...
متن کاملControl of homologous chromosome division in the mammalian oocyte.
Homologous chromosomes are segregated during the first meiotic division (meiosis I). Unfortunately, human oocytes are particularly susceptible to mis-segregation errors, so generating aneuploid, often non-viable, embryos. Here we review the cell biology of meiosis I and how homolog disjunction is regulated for mammalian oocytes. We focus on the activity of the anaphase-promoting complex/cycloso...
متن کاملEffect of EGF on development of bovine embryo cultured in G1/G2 sequential media
The nutritional requirements of mammalian embryos changes throughout pre-implantation period, coincident with changes in the secretion of the female reproductive tract. Therefore, it has been suggested that sequential culture media may support nutritional requirements for optimal growth of the mammalian embryos. In this study, we investigated the effect of two different concentrations (10 or 10...
متن کاملemo-1, a Caenorhabditis elegans Sec61p gamma homologue, is required for oocyte development and ovulation
emo-1(oz1) is a member of a class of hermaphrodite sterile mutations in Caenorhabditis elegans that produce endomitotic oocytes in the gonad arm. Oocytes in emo-1(oz1) mutants exhibit multiple defects during oogenesis. After meiotic maturation, ovulation fails, trapping oocytes in the gonad arm where they become endomitotic. emo-1 encodes a homologue of the Sec61p gamma subunit, a protein neces...
متن کامل